627 research outputs found

    Permian brachiopod faunas of southeastern Mongolia: systematics, biostratigraphy, palaeogeographical and palaeobiogeographical implications

    Full text link
    This research systematically studied Permian brachiopod fossils from southeastern Mongolia and correlated them with many places around East Asia. The research found that the fossil faunas are on the mixed affinities between high-latitude cool- to cold-water and low-latitude warm water species. Explanations are provided through southeastern Mongolia’s unique palaeogeographical and palaeoceanographical position in the Permian time

    Facile synthesis of superhydrophobic surface of ZnO nanoflakes: chemical coating and UV-induced wettability conversion

    Get PDF
    This work reports an oriented growth process of two-dimensional (2D) ZnO nanoflakes on aluminum substrate through a low temperature hydrothermal technique and proposes the preliminary growth mechanism. A bionic superhydrophobic surface with excellent corrosion protection over a wide pH range in both acidic and alkaline solutions was constructed by a chemical coating treatment with stearic acid (SA) molecules on ZnO nanoflakes. It is found that the superhydrophobic surface of ZnO nanoflake arrays shows a maximum water contact angle (CA) of 157° and a low sliding angle of 8°, and it can be reversibly switched to its initial superhydrophilic state under ultraviolet (UV) irradiation, which is due to the UV-induced decomposition of the coated SA molecules. This study is significant for simple and inexpensive building of large-scale 2D ZnO nanoflake arrays with special wettability which can extend the applications of ZnO films to many other important fields

    Morphology-dependent field emission properties and wetting behavior of ZnO nanowire arrays

    Get PDF
    The fabrication of three kinds of ZnO nanowire arrays with different structural parameters over Au-coated silicon (100) by facile thermal evaporation of ZnS precursor is reported, and the growth mechanism are proposed based on structural analysis. Field emission (FE) properties and wetting behavior were revealed to be strongly morphology dependent. The nanowire arrays in small diameter and high aspect ratio exhibited the best FE performance showing a low turn-on field (4.1 V/ÎŒm) and a high field-enhancement factor (1745.8). The result also confirmed that keeping large air within the films was an effective way to obtain super water-repellent properties. This study indicates that the preparation of ZnO nanowire arrays in an optimum structural model is crucial to FE efficiency and wetting behavior

    Fabrication and ultraviolet photoresponse characteristics of ordered SnOx (x ≈ 0.87, 1.45, 2) nanopore films

    Get PDF
    Based on the porous anodic aluminum oxide templates, ordered SnOx nanopore films (approximately 150 nm thickness) with different x (x ≈ 0.87, 1.45, 2) have been successfully fabricated by direct current magnetron sputtering and oxidizing annealing. Due to the high specific surface area, this ordered nanopore films exhibit a great improvement in recovery time compared to thin films for ultraviolet (UV) detection. Especially, the ordered SnOx nanopore films with lower x reveal higher UV light sensitivity and shorter current recovery time, which was explained by the higher concentration of the oxygen vacancies in this SnOx films. This work presents a potential candidate material for UV light detector
    • 

    corecore